This is a free non-commercial open source software!
If you used Coconut Libtool for your research, we would love to add it here for our community!
Beri, A. (2021, January 27). Stemming vs Lemmatization. Medium. https://towardsdatascience.com/stemming-vs-lemmatization-2daddabcb221
Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and implication rules for market basket data. ACM SIGMOD Record, 26(2), 255–264. https://doi.org/10.1145/253262.253325
George, Crissandra J., "Ambiguous Appalachianness: A Linguistic and Perceptual Investigation Into Arc-labeled Pennsylvania Counties" (2022). Theses and Dissertations-- Linguistics. 48. https://doi.org/10.13023/etd.2022.217
Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794. https://doi.org/10.48550/arXiv.2203.05794
Khyani, D., Siddhartha B S, Niveditha N M, & Divya B M. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Journal of University of Shanghai for Science and Technology , 22(10), 350–357. https://jusst.org/an-interpretation-of-lemmatization-and-stemming-in-natural-language-processing/
Lamba, M., & Madhusudhan, M. (2019, June 7). Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study. Scientometrics, 120(2), 477–505. https://doi.org/10.1007/s11192-019-03137-5
Lamba, M., & Madhusudhan, M. (2021, July 31). Text Pre-Processing. Text Mining for Information Professionals, 79–103. https://doi.org/10.1007/978-3-030-85085-2_3
Lamba, M., & Madhusudhan, M. (2021, July 31). Topic Modeling. Text Mining for Information Professionals, 105–137. https://doi.org/10.1007/978-3-030-85085-2_4
Santosa, F. A. (2023). Adding Perspective to the Bibliometric Mapping Using Bidirected Graph. Open Information Science, 7(1), 20220152. https://doi.org/10.1515/opis-2022-0152
Santosa, F. A. (2023). Prior steps into knowledge mapping: Text mining application and comparison. Issues in Science and Technology Librarianship, 102. https://doi.org/10.29173/istl2736
Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. https://doi.org/10.3115/v1/w14-3110
Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013, May 13). A biterm topic model for short texts. Proceedings of the 22nd International Conference on World Wide Web. https://doi.org/10.1145/2488388.2488514